WordCount单词统计是MapReduce的入门程序,用于统计文本文件中每个单词出现的个数,该文章用于记录实现过程。
新建WordCount.java文件
import java.io.IOException;
import java.util.StringTokenizer;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
public class WordCount {
public static class TokenizerMapper
extends Mapper<Object, Text, Text, IntWritable>{
private final static IntWritable one = new IntWritable(1);
private Text word = new Text();
public void map(Object key, Text value, Context context
) throws IOException, InterruptedException {
StringTokenizer itr = new StringTokenizer(value.toString());
while (itr.hasMoreTokens()) {
word.set(itr.nextToken());
context.write(word, one);
}
}
}
public static class IntSumReducer
extends Reducer<Text,IntWritable,Text,IntWritable> {
private IntWritable result = new IntWritable();
public void reduce(Text key, Iterable<IntWritable> values,
Context context
) throws IOException, InterruptedException {
int sum = 0;
for (IntWritable val : values) {
sum += val.get();
}
result.set(sum);
context.write(key, result);
}
}
public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
Job job = Job.getInstance(conf, "word count");
job.setJarByClass(WordCount.class);
job.setMapperClass(TokenizerMapper.class);
job.setCombinerClass(IntSumReducer.class);
job.setReducerClass(IntSumReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
FileInputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
}
编译java文件
编译前请确保环境变量已成功配置
HADOOP_HOME
和CLASSPATH
,否则编译会报错
javac WordCount.java
# 会生成如下class类文件
# 'WordCount$IntSumReducer.class' 'WordCount$TokenizerMapper.class' WordCount.class
# 确保环境变量存在,一般都配置好了,该步骤可忽略
# export HADOOP_HOME="/opt/hadoop-2.9.2/"
# export CLASSPATH="$($HADOOP_HOME/bin/hadoop classpath):$CLASSPATH"
把class文件打包成jar
jar -cvf WordCount.jar WordCount*.class
# 会生成WordCount.jar文件,输出如下
# added manifest
# adding: WordCount$IntSumReducer.class(in = 1739) (out= 739)(deflated 57%)
# adding: WordCount$TokenizerMapper.class(in = 1736) (out= 754)(deflated 56%)
# adding: WordCount.class(in = 1491) (out= 814)(deflated 45%)
上传数据文件到HDFS
# words.txt在master节点或者slave节点均可,内容为任意一段话或者一篇英文文章
hadoop fs -copyFromLocal ./words.txt /data/words.txt
使用HADOOP运行jar包
# WordCount为主类名称,前面的java文件中定义的,/data/words.txt为hadf上需要统计的文本文件,/output/result指定输出目录
hadoop jar WordCount.jar WordCount /data/words.txt /output/result
# 正常执行输出如下
# INFO client.RMProxy: Connecting to ResourceManager at master/192.168.36.130:8032
# WARN mapreduce.JobResourceUploader: Hadoop command-line option parsing not performed. Implement the Tool interface and execute your application with ToolRunner to remedy this.
# INFO input.FileInputFormat: Total input files to process : 1
# INFO mapreduce.JobSubmitter: number of splits:1
# INFO Configuration.deprecation: yarn.resourcemanager.system-metrics-publisher.enabled is deprecated. Instead, use yarn.system-metrics-publisher.enabled
# INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1683783058362_0016
# INFO impl.YarnClientImpl: Submitted application application_1683783058362_0016
# INFO mapreduce.Job: The url to track the job: http://master:8088/proxy/application_1683783058362_0016/
# INFO mapreduce.Job: Running job: job_1683783058362_0016
# INFO mapreduce.Job: Job job_1683783058362_0016 running in uber mode : false
# INFO mapreduce.Job: map 0% reduce 0%
# INFO mapreduce.Job: map 100% reduce 0%
# INFO mapreduce.Job: map 100% reduce 100%
# INFO mapreduce.Job: Job job_1683783058362_0016 completed successfully
# INFO mapreduce.Job: Counters: 49
# File System Counters...
# Job Counters...
# Map-Reduce Framework...
# Shuffle Errors...
# File Input Format Counters...
# File Output Format Counters...
查看结果
hadoop dfs -cat /output/result/part-r-00000
# 如下内容
#qii 1
#this 1
#tool 1
#world 1
#aha 2
#hello 1
#yes 2
报错说明
如果报错权限问题如下
Caused by: org.apache.hadoop.ipc.RemoteException(org.apache.hadoop.security.AccessControlException): Permission denied: user=xx, access=EXECUTE, inode="/tmp":root:supergroup:drwx------
at org.apache.hadoop.hdfs.server.namenode.FSPermissionChecker.check(FSPermissionChecker.java:350)
at org.apache.hadoop.hdfs.server.namenode.FSPermissionChecker.checkTraverse(FSPermissionChecker.java:311)
at org.apache.hadoop.hdfs.server.namenode.FSPermissionChecker.checkPermission(FSPermissionChecker.java:238)
at org.apache.hadoop.hdfs.server.namenode.FSPermissionChecker.checkPermission(FSPermissionChecker.java:189)
at org.apache.hadoop.hdfs.server.namenode.FSPermissionChecker.checkTraverse(FSPermissionChecker.java:539)
则说明HFDFS目录之前为root用户创建,当前用户为非root,没有权限,切换到root用户再执行即可。sudo
执行可能会存在环境变量读取不到的问题,需要执行sudo -s
切换root再进行操作。
如果编译时报错不存在
WordCount.java:4: error: package org.apache.hadoop.conf does not exist
import org.apache.hadoop.conf.Configuration;
^
WordCount.java:5: error: package org.apache.hadoop.fs does not exist
import org.apache.hadoop.fs.Path;
^
WordCount.java:6: error: package org.apache.hadoop.io does not exist
import org.apache.hadoop.io.IntWritable;
说明hadoop相关类名没有找到,需要配置class环境变量,可以手动执行命令,或者将其复制到~/.bashrc
中
export HADOOP_HOME="/opt/hadoop-2.9.2/" # 改为实际目录
export CLASSPATH="$($HADOOP_HOME/bin/hadoop classpath):$CLASSPATH"